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Hopf Algebras in Analysis1,2
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We present a construction of the Hopf algebra #[z]8, dual of the polynomials in
one variable, that uses rational functions. This construction illustrates how basic
concepts of the theory of bialgebras can be used in analysis. We describe several
spaces of interest in analysis that are isomorphic to #[z]8. Some of the results
presented here were motivated by problems posed by Rota in 1994.

1. INTRODUCTION

Duality in the linear algebra sense is certainly one of the most useful
concepts in mathematics. Spaces of linear functionals and pairs of dual vector
spaces have been extensively studied, especially the topological aspects and
the adjoints of operators. Most of the spaces that appear in analysis are spaces
of functions that, in addition to the linear space structure, have other algebraic
structure determined, for example, by a multiplication operation or by the
action of some group on their elements. Using duality, such additional struc-
ture can be transferred to the dual spaces. For example, a multiplication on
a space E induces a comultiplication on the dual space E* and a comultiplica-
tion on E induces a multiplication on E*. This way of applying duality, which
is quite natural in algebra, has been rarely used in analysis, probably because
translations, difference quotients, and Leibniz-type formulas have not been
studied as comultiplications. Buck (1952) used duality to define a multiplica-
tion of linear functionals on spaces of continuous functions and, more recently,
Brezinski and Maroni (1996) used the algebraic structure of the linear func-
tionals on the polynomials in the theory of Padé approximation.
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In the present paper, we use duality to construct some simple examples
of linear spaces that appear often in analysis and that have a bialgebra
structure, that is, a multiplication and a comultiplication related in an appro-
priate way. In fact, most of our examples have a Hopf algebra structure. We
use only some basic definitions and simple results about Hopf algebras.
On this subject the main references are Abe (1980), Kassel (1995), and
Sweedler (1969).

The ideas presented here are an outgrowth of research motivated by
questions posed by Rota in 1994. He asked, “Why is it that the convolution
of two exponential functions is a difference quotient?” and “Can we find a
simple and elegant description of the Hopf algebra dual of the polynomials
in one variable?” The second question was proposed by Rota as a homework
assignment in a graduate course on Hopf algebras in combinatorics (Rota,
1994). The author was attending the course and conjectured at that time (and
proved shortly after) that the Hopf algebra dual of #[t], usually denoted by
#[t]8, is isomorphic to the proper rational functions. Rota considered such a
description as an acceptable answer to his question, especially because the
description of the comultiplication was very simple. Later we discovered that
the abstract Hopf algebra #[t]8 has many concrete realizations that appear
naturally in analysis. These are some of the examples that we present in this
paper. One of them, the algebra of linearly recurrent sequences, has been
studied by several authors (Cerlienco el al., 1987; Chin and Goldman, 1993;
Peterson and Taft, 1980). We essentially answered Rota’s questions in Verde-
Star (1995, 1997) and found simple algebraic explanations of some basic
results about convolutions and transform methods for the solution of linear
functional equations. See also Verde-Star (2000), where we present a unified
method for the solution of linear functional equations.

Rota introduced bialgebras and Hopf algebras in combinatorics (Joni
and Rota, 1979). The basic idea is that comultiplications are closely related
to decompositions of objects. Hopf algebras are a natural tool for the study
of partially ordered sets and other combinatorial objects.

Through his profound questions and his search for simple explanations
of the basic facts, Rota motivated the introduction of Hopf algebra ideas in
analysis. We believe that Hopf algebras and some natural generalizations
will have an important place in analysis.

2. RATIONAL FUNCTIONS

Let f be an entire function. Consider Cauchy’s representation formula

1
2pi #g

f (z) dz
(z 2 a)k11 5

f (k)(a)
k!

(2.1)

where k is in N and g is a simple closed contour around a with the usual
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positive orientation. Formula (2.1) can be interpreted as an integral representa-
tion for the linear functional Ta,k that sends f to f (k)(a)/k!, which we call
a Taylor functional at a of order k. The kernel function in (2.1) is the
rational function

ra,k(z) 5
1

(z 2 a)11k , a P C, k P N (2.2)

Let 5 be the complex vector space generated by all the ra,k. It is easy to see
that 5 is the set of all rational functions of the form p(z)/u(z), where p and
u are polynomials, and u is monic and has degree strictly greater than the
degree of p. The elements of 5 are called proper rational functions. Let ^
denote the linear space of all the entire functions. If we consider (2.1) as an
indefinite inner product of ra,k and f, then we can extend it to a map from
5 3 ^ to C as follows:

^h, f & 5
1

2pi #g

h(z) f (z) dz, h P 5, f P ^ (2.3)

where g is a positively oriented, simple closed contour whose interior contains
all the singularities of h. By the residue theorem, (2.3) can be written as

^h, f & 5 (
aPS(h)

Residue of h(z) f (z) at a (2.4)

where S(h) is the set of poles of h. It is clear that the indefinite inner product
^ , & can be extended to a larger domain, for example, to } 3 }, where }
denotes the space of meromorphic functions of the form g/u, where g P ^
and u is a polynomial. L. Fantappiè developed from 1923 to 1930 a theory
of functionals representable by contour integrals like (2.3), which he called
analytic functionals (Fantappiè, 1925–26). In what follows, we consider only
the indefinite inner product restricted to the rational functions.

For simplicity, we denote by 3 the complex vector space of all polynomi-
als in one complex variable and, for any nonnegative integer n, we denote
by 3n the subspace of 3 of the polynomials whose degree is at most equal
to n. Let 4 be the space of all the rational functions. By the division algorithm
for polynomials, 4 is the direct sum of P and R, and thus the union of {zn:
n P N} and {ra,k: a P C, k P N} is a basis for Q. Allowing h and f to be
any elements of 4 in (2.3), we get an antisymmetric bilinear map from 4 3
4 to C. On the basic elements of 4, we have

^ra,k(z), zn& 5 1n
k2an2k, a P C, k, n P N (2.5)

^ra,k(z), rb,m(z)& 5 (21)k 1k 1 m
k 2 1

(a 2 b)11k1m , a Þ b, k, n P N (2.6)
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^ra,k, ra,m& 5 0, a P C, k, n P N (2.7)

^zn, zk& 5 0, k, n P N (2.8)

^ f, g& 5 2^g, f &, f, g P 4 (2.9)

Let p/u be an element of 5 and let g be in 4. Then

Kp
u

, gL 5 o
a

Residue of 1pg
u 2 at a (2.10)

where the sum runs over the set of the distinct roots of u(z).
Let f and g be rational functions. Then

^ f, pg& 5 ^pf, g&, p P 3 (2.11)

^ f, Dg& 5 ^2Df, g& (2.12)

where D denotes differentiation with respect to z; we have

^ra,n, fg& 5 o
n

k50
^ra,k, f & ^ra,n2k, g& (2.13)

^ f(z), g(z)& 5^ f(z 1 a), g(z 1 a)&, a P C (2.14)

Equation (2.13) is Leibniz’s rule and (2.14) is the translation invariance
property.

We define the reversion map R from 4 to 4 by

Rf(z) 5
1
z

f 11
z2, f P 4 (2.15)

Note that R2 5 I,^ f, g& 5 ^Rg, Rf & and^ f, Rg& 5 ^2Rf, g& for any rational
functions f and g.

Let p/u be a proper rational function and let q and v be polynomials. Then

Kp
u

, qvL 5 Kpq
u

, vL 5 Kr
u

, vL (2.16)

where pq 5 wu 1 r and the degree of r is strictly smaller than the degree
of u.

We say that a function f is defined on the roots of a polynomial u(z) if
for each root a of u with multiplicity m, the derivatives Dkf, for 0 # k , m,
are defined at a. Using (2.10), it is easy to prove the following propositions.
Let u and v be polynomials and let f be a function that is defined on the
roots of uv. Then
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K 1
uv

, vfL 5 K1
u

, fL (2.17)

and, if u and v have no common roots, then

K 1
uv

, fL 5 K1
u

,
f
vL 1 K1

v
,

f
uL (2.18)

A simple computation yields u(z) 5 (z 2 a)11k and v(z) 5 (z 2 b)11m,
where a Þ b. Then, by (2.18) and (2.13), for any function f defined on the
roots of uv, we have

^ra,krb,m, f & 5 o
k

j50
^ra,j, rb,m&^ra,k2j, f & 1 o

m

j50
^rb,j, ra,k&^rb,m2j, f & (2.19)

Taking f (z) 5 1/(t 2 z), where t Þ a and t Þ b, we get the multiplication
formula

ra,krb,m 5 o
k

j50
^ra,j, rb,m&ra,k2j 1 o

m

j50
^rb,j, ra,k&rb,m2j (2.20)

This is the basic partial fractions decomposition formula.
Now let uj (z) 5 (z 2 aj)mj, for 0 # j # s, where the aj are distinct

complex numbers and the mj are positive integers. Let w 5 P uj and define
qj 5 w/uj. Let f be a function defined on the roots of w. Then, using the
decomposition formula (2.18) repeatedly, we obtain

K1
w

, fL 5 o
s

j50
K1

uj
,

f
qj
L

and by Leibniz’ rule we get

K1
w

, fL 5 o
s

j50
o

mj21

k50
Kraj,k,

1
qj
L^raj,mj212k, f & (2.21)

Taking f (z) 5 p(z)/(t 2 z), where p is a polynomial whose degree is less
than the degree of w and t is such that w(t) Þ 0, we obtain the general partial
fractions decomposition formula

p(t)
w(t)

5 o
s

j50
o

mj21

k50
Kraj,k,

p
qj
L 1

(t 2 aj)mj2k (2.22)

The linear functional that sends f to ^1/w, f & is called the divided difference
of f with respect to the roots of w. Note that (2.21) gives an explicit expression
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for this functional as a linear combination of Taylor functionals at the roots
of w. If all the multiplicities mj in (2.21) are equal to one, we get

K 1
w(z)

f (z)L 5 o
s

k50

f (ak)
w8(ak)

Let n 1 1 be the degree of w and define wj,k P 3n ,

wj,k(t) 5 (t 2 aj)kqj (t), 0 # j # s, 0 # k # mj 2 1

Kraj,k,
wi,l

qj
L 5 d(j,k),(i,l)

This relation implies that the wj,k are linearly independent and hence they
are a basis for 3n. The linear functionals that send p to ^raj,k, p/qj & form the
dual basis. By Leibniz’ rule, they are linear combinations of the Taylor
functionals that correspond to the rational functions raj,k.

Dividing (2.22) by w(t), we obtain the interpolation formula

p(t) 5 o
s

j50
o

mj21

k50
Kraj,k,

p
qj
L wj,k(t), p P 3n

3. COALGEBRAS AND BIALGEBRAS

There are many constructions that transform a function of one variable
into a function of two variables. For example, if f (t) is a function of the
complex variable t, then f (t 1 z), f(tz), and ( f (t) 2 f (z))/(t 2 z) are functions
of two variables. In some cases, such functions have a weak separation-of-
variables property and can be written as a finite sum of products of the form
gi (t)hi (z). Constructions for which this property holds can be studied from
an algebraic point of view and are examples of comultiplications, which we
define next. Let k be a field, let # be a vector space over k, and let i denote
the identity map on #. A linear map D:# → # ^ # is a comultiplication if
it satisfies the coassociativity property

(i ^ D) + D 5 (D ^ i) + D

A linear map e: # → k is a counit if (e ^ i) + D is the natural isomorphism
from # to k ^ # and (i ^ e) + D is the natural isomorphism from # to # ^
k. A space # with a coassociative comultiplication and a counit is called
a coalgebra.

In the space 3 of polynomials, the map that sends p(z) to p(t 1 z) may
be seen as a comultiplication as follows. Since
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(t 1 z)n 5 o
n

j50 1
n
j2 t jz n2j

we define D on the basic elements by

Dz n 5 o
n

j50 1
n
j2 z j ^ z n2j, n $ 0

D is a comultiplication on 3. The counit is ep 5 p(0).
Let #* be the k-linear dual space of the coalgebra #. The comultiplication

D induces a multiplication in #* as follows:

^ab, f & 5 ^ a ^ b, Df &, a, b P #*, f P #

The transpose of e is a unit on #*. Therefore #* is an associative algebra
with unit element. In an analogous way, if we start with a finite-dimensional
algebra !, then, using duality, we can give !* a coalgebra structure. This
is not always true if ! is infinite dimensional (Abe, 1980; Kassel, 1995).

A space * that has both an algebra and a coalgebra structure is called
a bialgebra if D and e are algebra morphisms. This is, if m and h are the
multiplication and the unit of * and i is the identity map on the field, then
D( fg) 5 DfDg, D + h 5 (h ^ h) + i, i + (e ^ e) 5 e + m, and e + h 5 i.
These properties also mean that m and h are morphisms of coalgebras. A
bialgebra that has an endomorphism S compatible in a certain sense with
the bialgebra structure is a Hopf algebra (Kassel, 1995). S is called the
antipode map.

An example of Hopf algebra is 3. The multiplication is

z jz k 5 z j1k, j, k P N

and the unit element is z 0 5 1. The comultiplication and the counit were
defined previously. The antipode is

Sz k 5 (21)kz k, k P N

Using the Chu–Vandermonde convolution formula

1n 1 k
m 2 5 o

j$0 1
n
j2 1 k

m 2 j2
it is easy to show that D is an algebra map.

If * is a Hopf algebra, we define

*8 5 {a P **.m*(a) P ** ^ **}

where m is the multiplication in * and ** is the full linear dual of *. It is
easy to see that *8 is a subalgebra of **, m*(*8) , *8 ^ *8, D*(*8 ^
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*8) , *8, and S* (*8) , *8. Therefore *8 is a Hopf algebra and it is called
the dual Hopf algebra of * or the continuous dual of *. The following
proposition is a useful characterization of the dual Hopf algebra.

Proposition 3.1 (Abe, 1980, Theorem 2.2.12). *8 is the set of elements
of ** whose kernel contains an ideal of * of finite codimension.

4. THE HOPF DUAL OF THE POLYNOMIALS

The indefinite inner product introduced in Section 2 gives us a large set
of linear functionals on the space of polynomials. In particular, each proper
rational function f corresponds to the linear functional on 3 that sends p to
^ f, p&. Therefore we can identify 5 with a subspace of 3*. We will show
next that the Hopf algebra structure of 3 induces by duality a Hopf algebra
structure on 5 and it is (isomorphic) to 38.

Leibniz’ rule (2.13) gives us the comultiplication on 5, which we denote
by G,

Gra,n 5 o
n

k50
ra,k ^ ra,n2k, a P C, n P N

The counit F is given by

Fra,n 5 ^ra,n, 1& 5 d0,n, a P C, n P N.

The multiplication on 5, denoted by ,, is determined as follows:

^ra,k , rb,m, z n& 5 o
n

j50 1
n
j2^ra,k, z j&^rb,m, z n2j&

5 o
n

j50 1
n
j21 j

k2a j2k1n 2 j
m 2bn2m2j

5 1k 1 m
k 21 n

k 1 m2(a 1 b)n2k2m

Therefore

ra,k , rb,m 5 1k 1 m
k 2ra1b,k1m

This is called the Hurwitz convolution. Note that r0,0 is the unit element for
the multiplication ,. For the antipode, we have
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^ra,k(z), Sz n& 5 ^ra,k(z), (21)nz n& 5 (21)n1n
k2an2k

S*ra,k 5(21)kr2a,k

These definitions give 5 the structure of a Hopf algebra.

Theorem 4.1. 5 is the set of elements of 3* whose kernel contains an
ideal of 3 of finite codimension.

Proof. All the ideals of 3 are of the form w3, where w is a polynomial.
By the division algorithm for any nonzero w, the quotient 3/w3 has dimension
equal to the degree of w. Thus, any nonzero ideal of 3 has finite codimension.

Let p/w be an element of 5. By (2.17) and (2.8), we have

Kp
w

, wvL 5 ^p, v& 5 0, v P 3

and therefore the ideal w3 is contained in the kernel of p/w.
Let a be an element of 3* such. that the kernel of a contains the ideal

w3, where w is a polynomial of degree n 1 1. Let p be a polynomial. By
the division algorithm, p 5 qw 1 u, where u is a polynomial in 3n. Then
ap 5 au. Therefore, since 3 5 w3 % 3n , the functional a is determined
by its restriction to 3n , call it L. We saw in Section 2 that a basis for the
dual space of 3n consists of the functionals v → ^raj,k, v/qj &, which are linear
combinations of Taylor functionals associated with the roots of w. Therefore
L is a linear combination of such functionals and thus corresponds to a proper
rational function of the form p/w. n

If we look again at the definition of the Hopf algebra structure of 5,
we can see that everything is defined in terms of the indices a and k of the
basic elements ra,k. This suggests the following definition.

Let @ be the free complex vector space generated by the set C 3 N.
Define the multiplication ,, the comultiplication G, the counit F, and the
antipode by

(a, k) , (b, m) 5 1k 1 m
k 2(a 1 b, k 1 m)

G(a, n) 5 o
n

k50
(a, k) ^ (a, n 2 k)

F(a, n) 5 d0,n, S*(a, n) 5 (21)n(2a, n)

@ is a Hopf algebra isomorphic to 5. We call @ the binomial Hopf algebra
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over the complex numbers. Note that the vector subspace of @ generated by
the elements of the form (0, k), for k in N, is a Hopf algebra isomorphic to 3.

5. REALIZATIONS OF @

We present examples of vector spaces that can be equipped with a Hopf
algebra structure isomorphic to that of @, and which appear in a natural way
in analysis.

Suppose & is a complex vector space with a basis G 5 {ga,k: a P C,
k P N}. The obvious bijection between the bases G of & and C 3 N of @
yields a vector space isomorphism between & and @, and then we can transfer
the Hopf algebra structure from @ to & in the obvious way. We will use the
same symbols to denote the operations, the counit, and the antipode on &
and on @.

Let t be a complex variable and define the functions

fa,k(t) 5
tk

k!
eat, a P C, k P N

We denote by % the complex vector space generated by the fa,k. The elements
of % are called quasi-polynomials or exponential polynomials and they are
the solutions of linear homogeneous differential equations with constant
coefficients. The natural multiplication of the basic elements fa,k, considered
as functions of t, gives

fa,k fb,m 5 1k 1 m
k 2 fa1b,k1m

which coincides with the multiplication ,. The coproduct

Gfa,n 5 o
n

k50
fa,k ^ fa,n2k

is induced by the translation maps Uz , defined by Uz f (t) 5 f (t 1 z), as in
the case of the coproduct D on 3. The counit on % and the antipode are

Ffa,n 5 fa,n(0) 5 d0,n, S*fa,n(t) 5 fa,n(2t)

Therefore % is a natural Hopf algebra extension of 3. Note that the elements
f0,k, for k in N, form a basis for 3.

Consider the linear operators La,k on 3 defined by

La,k 5
Dk

k!
Ua , a P C, k P N

and let $ be the complex vector space generated by the La,k. We call $ the
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algebra of shift invariant operators. The multiplication on $ induced by @
coincides with the multiplication of linear operators since $ commutes with
translations and UaUb 5 Ua1b. The coproduct is induced by Leibniz’ rule
for differentiation,

GLa,n 5 o
n

k50
La,k ^ La,n2k

The counit and the antipode are given by

FLa,n 5
Dn

n!
Ua1 5 d0,n, S*La,n 5 (21)n Dn

n!
U2a

Since the translations on 3 can be written in the form

Ua 5 o
k$0

ak

k!
Dk 5 eaD

we can consider $ as the Hopf algebra obtained from % replacing t by the
operator D, that is, we can identify La,k with fa,k(D).

Let 6 be the complex vector space generated by the sequences

sa,k(n) 5 1n
k2an2k, (a, k) P C 3 N, n P N

The elements of 6 are called linearly recurrent sequences. They are the
solutions of homogeneous linear difference equations with constant coeffi-
cients. The multiplication , in 6 gives

sa,k(n) , sb,m(n) 5 1k 1 m
k 21 n

k 1 m2(a 1 b)n2k2m

A simple computation using the binomial formula shows that this multiplica-
tion coincides with Cauchy’s convolution of sequences, defined by

f , g(n) 5 o
n

j50 1
n
j2 f ( j )g(n 2 j )

By the Chu–Vandermonde convolution formula, we have

sa,k(n 1 m) 5 1n 1 m
k 2an1m2k

5 o
k

j50 1
n
j2an2j1 m

k 2 j2am2k1j

5 o
k

j50
sa,j(n)sa,k2j(m)

and hence the coproduct G on 6 is induced by translations.
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The counit and the antipode are

Fsa,k 5 d0,k 5 sa,k(0)

S*sa,k(n) 5 (21)k1n
k2(2a)n2k 5 (21)n1n

k2an2k

Therefore

S*sa,k(n) 5 (21)nsa,k(n)

The Hopf algebra 6 has been studied by Cerlienco et al. (1987), Chin
and Goldman (1993), and Peterson and Taft (1980).

Consider now the linear space + generated by the functions

la,k(t) 5
(log t)k

k!
ealogt

where t is a complex variable and we take the principal determination of log
t, with imaginary part in the interval [0, 2p). Here, as in the case of %, the
multiplication , coincides with the usual multiplication of functions of t. The
comultiplication G is induced by the map that sends t to tu, since

la,k(tu) 5 o
k

j50
la,j(t)la,k2j(u)

The counit F is evaluation at t 5 1,

Fla,k(t) 5 la,k(1) 5 d0,k,

the antipode is

S*la,k(t) 5 la,k(1/t)

6. CONVOLUTIONS

Let us observe that for some of the concrete realizations of @ described
above, the multiplication , is not the natural multiplication. This happens
for 6 and for 5, where , is not the multiplication of the objects considered
as complex-valued functions in some domain. The natural multiplication in
6 is the Hadamard multiplication of sequences, denoted by ● and defined by

f • g(n) 5 f (n)g(n), n P N, f, g P 6

The Hadamard product of two basic elements of 6 is
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(sa,k • sb,m)(n) 5 1n
k2an2k1n

m2bn2m

We can find an explicit expression for this product as a linear combination of
basic elements of 6 using the following property of the binomial polynomials.

Proposition 6.1. For any complex number t and natural numbers k and
m, with k # m, we have

1 t
k21 t

m2 5 o
k

j50 1
k 1 m 2 j

j, k 2 j, m 2 j21 t
k 1 m 2 j2

This linearization formula is easily proved using induction on k and
the basic recurrences for the binomial polynomials. A direct application of
Newton’s interpolation formula gives another proof.

Corollary 6.1. Let r be the minimum of k and m. Then

sa,k • sb,m 5 o
r

j50 1
k 1 m 2 j

j, k 2 j, m 2 j2am2jbk2jsab,k1m2j

The multiplicaton of elements of 5 considered as functions of t is given
in (2.20) in the case a Þ b, and

ra,k(t)ra,m(t) 5 ra,k1m11(t)

These formulas define a multiplication on any concrete realization & of @,
replacing the ra,j by the corresponding basic elements of &. On the Hopf
algebra %, such multiplication coincides with the classic convolution product

( f ∗ g)(t) 5 #
t

0

f ( y)g(t 2 y) dy, t P R

and which is easily extended to the case of complex values of t.
In view of the above examples, we can obtain many different multiplica-

tions, or convolution products, on any vector space isomorphic to @, con-
structing a vector space ^ isomorphic to @ whose elements are complex-
valued functions defined on some set. The natural multiplication on ^ can
be transferred to any other isomorphic copy of @.
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